Step of Proof: can-apply-p-co-restrict 11,40

Inference at * 
Iof proof for Lemma can-apply-p-co-restrict:


  AB:Type, f:(A(B + Top)), P:(A), p:(x:A. Dec(P(x))), x:A.
  (can-apply(p-co-restrict(f;p);x))  ((can-apply(f;x)) & (P(x))) 
latex

 by ((((UnivCD ) 
CollapseTHENA (Auto))
CollapseTHEN (((Unfold `p-co-restrict` 0) 

CoCollapseTHEN (((((RWO "can-apply-compose-iff" 0) 
THEN (MaAuto))
CollapseTHEN (((((
CoAll (RWO "do-apply-p-co-filter")) 
CollapseTHEN (Auto))
CollapseTHEN (((
CoAll (RWO "can-apply-p-co-filter")) 
CollapseTHEN (Auto)))))))))) 
latex


Co.


Definitionsp-co-restrict(f;p), f o g  , x.A(x), x:A.B(x), s = t, inr x , inl x , suptype(ST), S  T, A c B, case b of inl(x) => s(x) | inr(y) => t(y), tt, ff, Unit, if b then t else f fi , Dec(P), A, False, Void, P  Q, P & Q, x:A  B(x), b, , can-apply(f;x), do-apply(f;x), p-co-filter(f), left + right, Top, T, x(s), f(a), xt(x), P  Q, P  Q, x:AB(x), True, t  T, x:AB(x), , Type
Lemmasdecidable wf, iff functionality wrt iff, can-apply-compose-iff, p-compose wf, false wf, not wf, p-co-filter wf, do-apply wf, btrue wf, bfalse wf, bool wf, squash wf, true wf, top wf, can-apply-p-co-filter, assert wf, can-apply wf, do-apply-p-co-filter

origin